

## Grid Strength Metrics and Evaluation in Converter-Dominated Grids

Paul Imgart & Peiyuan Chen Operation & Control of Active Grid Group

Division of Electric Power Engineering Chalmers University of Technology



## **Shift in Generation Technology**









+





# **Grid voltage strength**

Main research question:

Under what conditions are <u>classical indicators</u>, such as fault current and short circuit capacity (SCC), able or not able to represent the <u>stiffness of grid voltage</u> in a grid with high penetration of converter-based generators?



## **Electrical system**



## **Voltage strength measures**





Fault

Load steps



# **Voltage indicators**

- Fault current
- Short circuit capacity
- Thevenin impedance
- Voltage regulation strength

## PQ diagram – steady state







# **VSC behavior during fault**

Phase lockd Loop

frequency freeze during severe voltage dips

- Fault current limitation
  - maintain current angle vs voltage angle

Reactive current contribution during and post fault
differs in different grid codes



### **Example fault current from SM & VSC**





## **Example fault current from SM & VSC**





## **Example fault current from SM & VSC**





## **Cases evaluated**

| Case number & disturbance                 | Voltage<br>strength<br>measure | $\begin{array}{l} \text{Stable cases} \\ \text{(SM + VSC)} \end{array}$ |
|-------------------------------------------|--------------------------------|-------------------------------------------------------------------------|
| 1: Bolted Fault                           | $\Delta V_{\rm f,end}$         | 16 + 16                                                                 |
| 2: $Z_{\text{fault}} = 0.04 \text{ p.u.}$ | $\Delta V_{\rm f,end}$         | 16 + 15                                                                 |
| 3: $Z_{\text{fault}} = 0.08 \text{ p.u.}$ | $\Delta V_{\mathrm{f,end}}$    | 16 + 16                                                                 |
| 4: $\Delta P = 0.1  \text{p.u.}$          | $\Delta V_{\rm load,min}$      | 15 + 15                                                                 |
| 5: $\Delta Q = 0.1  \text{p.u.}$          | $\Delta V_{\rm load,min}$      | 15 + 15                                                                 |
| 6: $\Delta P = 0.25$ p.u.                 | $\Delta V_{\rm load,min}$      | 15 + 15                                                                 |
| 7: $\Delta Q = 0.25$ p.u.                 | $\Delta V_{\rm load,min}$      | 15 + 15                                                                 |
| 8: $\Delta P = 0.5  \text{p.u.}$          | $\Delta V_{\rm load,min}$      | 15 + 15                                                                 |
| 9: $\Delta Q = 0.5  \text{p.u.}$          | $\Delta V_{\rm load,min}$      | 15 + 5                                                                  |
| 4: $\Delta P = 0.1  \text{p.u.}$          | $\Delta V_{\rm load, steady}$  | 15 + 15                                                                 |
| 5: $\Delta Q = 0.1  \text{p.u.}$          | $\Delta V_{\rm load, steady}$  | 15 + 15                                                                 |
| 6: $\Delta P = 0.25$ p.u.                 | $\Delta V_{\rm load, steady}$  | 15 + 15                                                                 |
| 7: $\Delta Q = 0.25$ p.u.                 | $\Delta V_{\rm load, steady}$  | 15 + 15                                                                 |
| 8: $\Delta P = 0.5  \text{p.u.}$          | $\Delta V_{\rm load, steady}$  | 15 + 15                                                                 |
| 9: $\Delta Q = 0.5  \text{p.u.}$          | $\Delta V_{\rm load, steady}$  | 15 + 13                                                                 |

- Different line length
- Different grid strength
- Different active power reference
- Different short circuit ratio
- Different locations of disturbance

# Evaluation of fault current/SCC as an indicator





### Some take aways

- The change in fault current due to the generation technology shift is not only characterized by the initial fault current, but also enhanced controllability from converters
- Same fault current (or SCC) does not necessarily represent the same voltage strength in two grids with different generation mix.
- For a fixed generation mix, a higher fault current (or SCC) does reflect a higher voltage strength under the cases evaluated